Modeling the thermal evolution of enzyme-created bubbles in DNA

نویسندگان

  • D. Hennig
  • J. F. R. Archilla
  • J. M. Romero
چکیده

The formation of bubbles in nucleic acids (NAs) are fundamental in many biological processes such as DNA replication, recombination, telomeres formation, nucleotide excision repair, as well as RNA transcription and splicing. These precesses are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach we model the structure of the DNA duplex by a nonlinear network of coupled oscillators. We show that in fact from certain local structural distortions there originate oscillating localized patterns, that is radial and torsional breathers, which are associated with localized H-bond deformations, being reminiscent of the replication bubble. We further study the temperature dependence of these oscillating bubbles. To this aim the underlying nonlinear oscillator network of the DNA duplex is brought in contact with a heat bath using the NoséHoover-method. Special attention is paid to the stability of the oscillating bubbles under the imposed thermal perturbations. It is demonstrated that the radial and torsional breathers, sustain the impact of thermal perturbations even at temperatures as high as room temperature. Generally, for nonzero temperature the H-bond breathers move coherently along the double chain whereas at T = 0 standing radial and torsional breathers result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the thermal evolution of enzyme-created bubbles in DNA.

The formation of bubbles in nucleic acids (NAs) is fundamental in many biological processes such as DNA replication, recombination, telomere formation and nucleotide excision repair, as well as RNA transcription and splicing. These processes are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach, we model the ...

متن کامل

Modeling enzyme induced creation of bubbles in DNA

The formation of bubbles in nucleic acids (NAs) are fundamental in many biological processes such as DNA replication, recombination, telomeres formation, nucleotide excision repair, as well as RNA transcription and splicing. These precesses are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach we model the st...

متن کامل

Cell damaging by irradiating non-thermal plasma to the water: Mathematical modeling of chemical processes

Recently non-thermal plasma (NTP) is applied for many therapeutic applications. By NTP irradiating to the tissues or cell-lines, the water molecules (H2O) would be also activated leading to generate hydrogen peroxide (H2O2). By irradiating plasma to bio-solution, its main output including vacuum UV to UV causes the photolysis of H2O leading to generat...

متن کامل

Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation

The paper uses mesoscopic, non-linear lattice dynamics based (Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA below and near the denaturation temperature. Computationally efficient notation is introduced for the relevant statistical mechanics. Computed melting profiles of long and short heterogeneous sequences are presented, using a recently introduced reparametrizat...

متن کامل

Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay

Development of potent new anti-Shigella agents for rapid and specific detection and treatment is of great importance. Aptamers, nucleic acid oligomers capable of specific binding to a wide range of non-nucleic acid targets, may be of value for this purpose. In the present study, we used a Systematic Evolution of Ligands by Exponential enrichment (SELEX) process to select DNA aptamers that b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004